Эллипс. Фокусы. Уравнение эллипса. Фокусное расстояние.
Большая и малая оси эллипса. Эксцентриситет. Уравнение
касательной к эллипсу. Условие касания прямой и эллипса.
Эллипсом ( рис.1 ) называется геометрическое место точек, сумма расстояний от которых до двух заданных точек F1 и F2 , называемых фокусами эллипса, есть величина постоянная.
Уравнение эллипса ( рис.1 ) :
Здесь начало координат является центром симметрии эллипса, а оси координат – его осями симметрии. При a > b фокусы эллипса лежат на оси ОХ ( рис.1 ) , при a < b фокусы эллипса лежат на оси ОY , а при a = b эллипс становится окружностью ( фокусы эллипса в этом случае совпадают с центром окружности ). Таким образом, окружность есть частный случай эллипса.
Отрезок F1F2 = 2 с , где , называется фокусным расстоянием. Отрезок AB = 2 a называется большой осью эллипса, а отрезок CD = 2 b – малой осью эллипса. Число e = c / a , e < 1 называетсяэксцентриситетом эллипса.
Пусть Р ( х1 , у 1 ) – точка эллипса, тогда уравнение касательной к эллипсу в данной точке имеет вид:
Условие касания прямой y = m x + k и эллипса х 2 / a 2 + у 2 / b 2 = 1 :
k 2 = m 2 a 2 + b 2 .