Главная | Регистрация | Вход | RSSПятница, 11.07.2025, 14:15

EzDz

Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 12
Статистика
Всего пользователей: 2
Новых за месяц:
Новых за неделю:
Новых вчера:
Новых сегодня:

Эллипс

Эллипс. Фокусы. Уравнение эллипса. Фокусное расстояние.

Большая и малая оси эллипса. Эксцентриситет. Уравнение

касательной к эллипсу. Условие касания прямой и эллипса.

 

Эллипсом ( рис.1 ) называется геометрическое место точек, сумма расстояний от которых до двух заданных точек  F1 и  F, называемых  фокусами эллипса, есть величина постоянная.

Уравнение эллипса ( рис.1 ) :

Здесь начало координат является центром симметрии эллипса, а оси координат – его осями симметрии. При  a > b фокусы эллипса лежат на оси ОХ  ( рис.1 ) , при  a < b  фокусы эллипса лежат на оси О, а при  a = b  эллипс становится окружностью ( фокусы эллипса в этом случае совпадают с центром окружности ). Таким образом,  окружность есть частный случай эллипса.

Отрезок  F1F2 = 2 с ,  где , называется фокусным расстоянием. Отрезок  AB = 2 a называется большой осью эллипса, а отрезок  CD = 2 b – малой осью эллипса. Число  e = c / a ,  e < 1 называетсяэксцентриситетом эллипса.

 

Пусть  Р ( х1 ,  у 1 ) – точка эллипса, тогда  уравнение касательной к эллипсу в данной точке имеет вид:

Условие касания прямой  y = m x + k  и эллипса  х  +  у  2 / b 2  = 1 :

 

 

k 2  = m 2 + b 2 .

 

Реклама
Вход на сайт
Поиск
Календарь
«  Июль 2025  »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Copyright MyCorp © 2025
    Бесплатный конструктор сайтовuCoz