Главная | Регистрация | Вход | RSSПятница, 13.06.2025, 15:11

EzDz

Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 12
Статистика
Всего пользователей: 2
Новых за месяц:
Новых за неделю:
Новых вчера:
Новых сегодня:

Теоремы, аксиомы, определения

Доказательство. Теорема. Аксиома.

Начальные понятия. Определение.

 

 

Доказательство – рассуждение, устанавливающее какое-либо свойство.

 

Теорема – утверждение, устанавливающее некоторое свойство и требующее доказательства. Теоремы называются также леммамисвойствами, следствиями, правилами, признаками, утверждениями. Доказывая теорему, мы основываемся на ранее установленных свойствах; некоторые их них также являются теоремами. Однако некоторые свойства рассматриваются в геометрии как основные и принимаются без доказательств.

 

Аксиома – утверждение, устанавливающее некоторое свойство и принимаемое без доказательства. Аксиомы возникли из опыта, и опыт же проверяет их истинность в совокупности. Можно построить систему аксиомразличными способами. Однако важно, чтобы принятый набор аксиом был минимальным и достаточным для доказательства всех остальных геометрических свойств. Заменяя в этом наборе одну аксиому другой, мы должны будем доказывать заменённую аксиому, так как она теперь уже не аксиома, а теорема.

 

Начальные понятия. В геометрии ( и вообще, в математике ) существуют понятия, которым невозможно дать сколько-нибудь осмысленное определение. Мы их принимаем как начальные понятия. Смысл этих понятий можетбыть установлен только на основании опыта. Так, понятия точки и прямой линии являются начальными. На основе начальных понятий мы можем дать определения всем остальным понятиям.

Реклама
Вход на сайт
Поиск
Календарь
«  Июнь 2025  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
30
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Copyright MyCorp © 2025
    Бесплатный конструктор сайтовuCoz