Главная | Регистрация | Вход | RSSПятница, 13.06.2025, 14:26

EzDz

Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 12
Статистика
Всего пользователей: 2
Новых за месяц:
Новых за неделю:
Новых вчера:
Новых сегодня:

Треугольник

ТреугольникОстроугольный, тупоугольный и прямоугольный треугольник.

Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.

Основные свойства треугольников. Сумма углов треугольника.

Внешний  угол треугольника. Признаки равенства треугольников.

Признаки равенства прямоугольных треугольников.

Замечательные линии и точки в треугольнике: высоты, медианы,

биссектрисы, срединныe перпендикуляры, ортоцентр,

центр тяжести, центр описанного круга, центр вписанного круга.

Теорема Пифагора. Соотношение сторон в произвольном треугольнике.

 

 

 

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

 

Если все три угла острые ( рис.20 ), то это остроугольный треугольник. Если один из углов прямой (  C, рис.21 ), то это прямоугольный треугольник; стороны a, b, образующие прямой угол, называются катетами; сторона  c, противоположная прямому углу, называется гипотенузой. Если один из углов тупой (  B, рис.22 ), то это тупоугольный треугольник. 


Треугольник ABC ( рис.23 ) - равнобедренный, если две его стороны равны ( ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) – равносторонний,если все его стороны равны ( ). В общем случае ( a ≠ b ≠ c ) имеем неравносторонний треугольник.

 

Основные свойства треугольников. В любом треугольнике: 

 

1.  Против большей стороны лежит больший угол, и наоборот.

 

2.  Против равных сторон лежат равные углы, и наоборот.

     В частности, все углы в равностороннем треугольнике равны.

 

3.  Сумма углов треугольника равна 180 º .

 

     Из двух последних свойств следует, что каждый угол в равностороннем

     треугольнике равен 60 º.

 

4.  Продолжая одну из сторон треугольника (AC, рис.25), получаем внешний

     угол  BCD. Внешний угол треугольника равен сумме внутренних углов,

     не смежных с ним BCD = A +  B.

 

 5.  Любая сторона треугольника меньше суммы двух других сторон и больше

      их разности ( a < b + c,  a > b – c;  b < a + c,  b > a – c;  c < a + b,  c > a – b ).

 

Признаки равенства треугольников.  

 

Треугольники равны, если у них соответственно равны:

          a)  две стороны и угол между ними;

   b)  два угла и прилегающая к ним сторона;

   c)  три стороны.

 

Признаки равенства прямоугольных треугольников. 

 

Два прямоугольных треугольника равны, если выполняется одно из следующих условий:

1)  равны их катеты;

2)  катет и гипотенуза одного треугольника равны катету и гипотенузе другого;

3)  гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;

4)  катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;

5)  катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

 

Замечательные линии и точки в треугольнике.

 

Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольникаТри высоты треугольника всегда пересекаютсяв одной точке, называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O, рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O, рис.27 )  снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

 

 

 

 

Медиана – это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD, BE, CF, рис.28 ) пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

 

Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника ( AD, BE, CF, рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).

 

 

Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам; например, на  рис.29  AE : CE = AB : BC .

 

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС ( KO, MO, NO, рис.30 ) пересекаются в одной точке О, являющейся центромописанного круга ( точки K, M, N – середины сторон треугольника ABC ).

 

 

 

 

 

 

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном - в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

 

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

 

Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами  a, b и гипотенузой c.

 

 

 

Построим квадрат AKMB, используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF, сторона которого равна  a + b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2. С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, то есть

                                                                                                             

2 + 4 ( ab / 2 ) = 2 + 2 ab ,

отсюда, 

c 2 + 2 ab = ( a + b ) 2 ,

и окончательно имеем:

2 =  a 2 + b 2 .

 

Соотношение сторон в произвольном треугольнике.

                           

В общем случае ( для произвольного треугольника ) имеем:

                                                              

2 = a 2 + b 2 – 2ab · cos C,

 

где C – угол между сторонами  a  и  b .  

Реклама
Вход на сайт
Поиск
Календарь
«  Июнь 2025  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
30
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Copyright MyCorp © 2025
    Бесплатный конструктор сайтовuCoz