Главная | Регистрация | Вход | RSSПятница, 13.06.2025, 15:07

EzDz

Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 12
Статистика
Всего пользователей: 2
Новых за месяц:
Новых за неделю:
Новых вчера:
Новых сегодня:

Многогранники. Призма, параллелепипед, пирамида

Многогранники. Выпуклый многогранник. Призма.

Прямая, наклонная и правильная призма. Параллелепипед.

Прямой и прямоугольный параллелепипед, куб. Пирамида.

Тетраэдр. Правильная пирамида. Усеченная пирамида.

 

 

Многогранник – это тело, граница которого состоит из кусков плоскостей ( многоугольников )Эти многоугольники называются гранями, их стороны – рёбрами, их вершины – вершинами многогранника. Отрезки, соединяющие две вершины и не лежащие на одной грани, называются диагоналями многогранника. Многогранник – выпуклый, если все его диагонали расположены внутри него.

 

Призма – это многогранник ( рис.79 ), две грани которой ABCDE и abcde ( основания призмы ) – равные многоугольники с соответственно параллельными сторонами, а остальные грани ( AabB, BbcC и т.д. ) - параллелограммы, плоскости которых параллельны прямой ( Aa, или Bb, или Cc и т.д. ). Параллелограммы AabB, BbcC и т.д. называются боковыми гранямирёбра Aa, Bb, Cc и т.д. называются боковыми рёбрами. Высота призмы – это любойперпендикуляр, опущенный из любой точки основания на плоскость другого основания. В зависимости от формы многоугольника, лежащего в основании, призма может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т.д. Если боковые рёбра призмы перпендикулярны к плоскости основания, то такая призма называется прямой; в противном случае – это наклонная призма. Если в основании прямой призмы лежит правильный многоугольник, то такая призма также называется правильной. На рис.79 показана наклонная призма.

 

 

Параллелепипед - это призма, основания которой параллелограммы. Таким образом, параллелепипед имеет шесть граней и все они – параллелограммы. Противоположные грани попарно равны и параллельны. У параллелепипеда

четыре диагонали; они все пересекаются в одной точке и делятся в ней пополам. Если четыре боковые грани параллелепипеда – прямоугольники, то он называется прямым. Прямой параллелепипед, у которого все шесть граней – прямоугольники, называется прямоугольным. Диагональ прямоугольного параллелепипеда  d  и его рёбра  a, b, c  связаны соотношением:  2 = 2+ b 2 + c 2. Прямоугольный параллелепипед, все грани которого квадраты, называется кубом. Все рёбра куба равны.

 

Пирамида – это многогранник, у которого одна грань ( основание пирамиды ) – это произвольный многоугольник    ( ABCDE, рис.80 ), а остальные грани ( боковые грани ) – треугольники с общей вершиной S, называемойвершиной пирамиды. Перпендикуляр SO, опущенный из вершины пирамиды на её основание, называется высотой пирамиды. В зависимости от формы многоугольника, лежащего в основании, пирамида может быть соответственно: треугольной,  четырёхугольной,  пятиугольной,  шестиугольной и т.д. Треугольная  пирамида является  тетраэдром  ( четырёхгранником ), четырёхугольная – пятигранником и т.д. Пирамида называетсяправильной, если в основании лежит правильный многоугольник, а её высота падает в центр основания. Все боковые рёбра правильной пирамиды равны; все боковые грани – равнобедренные треугольники. Высота боковой грани (SF) называется апофемой правильной пирамиды.

 

 

Если провести сечение abcde, параллельное основанию ABCDE ( рис.81 ) пирамиды, то тело, заключённое между этими плоскостями и боковой поверхностью, называется усеченной пирамидой. Параллельные грани ABCDE  и abcde называются основаниями; расстояние Oo между ними – высотой. Усечённая пирамида называется правильной, если пирамида, из которой она была получена – правильная. Все боковые грани правильной усечённой пирамиды – равные равнобочные трапеции. Высота  Ff  боковой грани ( рис.81 ) называется апофемой правильной усечённой пирамиды.

Реклама
Вход на сайт
Поиск
Календарь
«  Июнь 2025  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
30
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Copyright MyCorp © 2025
    Бесплатный конструктор сайтовuCoz