Главная | Регистрация | Вход | RSSПятница, 13.06.2025, 15:04

EzDz

Меню сайта
Наш опрос
Оцените мой сайт
Всего ответов: 12
Статистика
Всего пользователей: 2
Новых за месяц:
Новых за неделю:
Новых вчера:
Новых сегодня:

Симметрия. Симметрия плоских фигур

Зеркальная симметрия. Плоскость симметрии.

Центральная симметрия. Центр симметрии.

Симметрия вращения. Ось симметрии. Осевая симметрия.

Примеры вышеупомянутых видов симметрии.

Симметрия плоских фигур. Зеркально-осевая симметрия.

Примеры симметрии плоских фигур.

 

 

Зеркальная симметрия. Геометрическая фигура называется симметричной относительно плоскости S ( рис.104 ), если для каждой точки E этой фигуры может быть найдена точка E’ этой же фигуры, так что отрезок EE’перпендикулярен плоскости S и делится этой плоскостью пополам ( EA = AE’ ). Плоскость S называется плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова ( например, левая перчатка не подходит для правой руки и наоборот ). Они называются зеркально равными.

 

 

Центральная симметрия. Геометрическая фигура ( или тело ) называется симметричной относительно центра C ( рис.105 ), если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок

AE проходит через центр C и делится в этой точке пополам ( AC = CE ). Точка C называется центром симметрии.

 

 

 

Симметрия вращения. Тело ( фигура ) обладает симметрией вращения ( рис.106 ), если при повороте на угол 360°/n  ( здесь n – целое число ) вокруг некоторой прямой AB ( оси симметрии ) оно полностью совпадает со своим

начальным положением. При n = 2 мы имеем  осевую симметрию. Треугольники ( рис.105 ) имеют также осевую симметрию.

 

 

 

Примеры вышеупомянутых видов симметрии.

Шар ( сфера ) обладает и центральной, и зеркальной, и симметрией вращения. Центром симметрии является центр шара; плоскостью симметрии является плоскость любого большого круга; осью симметрии – диаметр шара.

Круглый конус обладает осевой симметрией; ось симметрии – ось конуса.

Прямая призма обладает зеркальной симметрией. Плоскость симметрии параллельна её основаниям и расположена на одинаковом расстоянии между ними.

 

Симметрия плоских фигур. Зеркально-осевая симметрия. Если плоская фигура ABCDE ( рис.107 ) симметрична относительно плоскости S ( что возможно, если только плоская фигура перпендикулярна плоскости S ), то прямаяKL, по которой эти плоскости пересекаются, является осью симметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально-симметричной.

 

 

Центральная симметрия. Если плоская фигура ( ABCDEF, рис.108 ) имеет ось симметрии второго порядка, перпендикулярную плоскости фигуры ( прямая MN, рис.108 ), то точка O, в которой пересекаются прямая MN и плоскость фигуры ABCDEF, является центром симметрии.

 

Примеры симметрии плоских фигур.

Параллелограмм имеет только центральную симметрию. Его центр симметрии – точка пересечения диагоналей.

Равнобочная трапеция имеет только осевую симметрию. Её ось симметрии – перпендикуляр, проведенный через середины оснований трапеции.

Ромб имеет и центральную, и осевую симметрию. Его ось симметрии – любая из его диагоналей; центр симметрии – точка их пересечения.

Круг имеет … Что вы можете сказать о видах симметрии круга ? 

Реклама
Вход на сайт
Поиск
Календарь
«  Июнь 2025  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
30
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Copyright MyCorp © 2025
    Бесплатный конструктор сайтовuCoz